# **Trustworthy AI Systems**

-- Security of AI in Training

Instructor: Guangjing Wang guangjingwang@usf.edu

#### Last Lecture

- Adversarial Attacks
  - Threat Model
  - Continuous Data
    - FGSM, PGD
    - Black-box attacks
  - Discrete Data
    - Token manipulation
    - Gradient-based
    - Jailbreaking in LLM
  - Defenses

#### **This Lecture**

- Poisoning Attacks
- Poisoning Scenarios
  - Centralized
  - Distributed
- Defense for Poisoning Attacks

#### **Poisoning Attacks**

- In poisoning attacks, the attacker tampers with the training process.
  - Commonly the attacker inserts a trigger in inputs or changes the labels to cause a machine learning model to misclassify inputs
- Two types of poisoning attacks
  - Availability attack
    - The goal is to insert poisoned data samples in order to degrade the accuracy of the model on clean inputs
  - Backdoor attack
    - It retains high accuracy on clean inputs and misclassifies only triggered inputs

#### Poisoning Attack Example

- The eyeglasses are the backdoor trigger
  - On clean inputs, a backdoored model performs correctly and classifies all inputs with the correct class label
  - On triggered inputs where the person wears the eyeglasses, the backdoored model classifies the images to a target class (e.g., Admin)



## Poisoning Attacks Taxonomy by Trigger Types

- Different means of constructing triggers in computer vision:
  - An image blended with the trigger (e.g., Hello Kitty trigger)
  - Distributed trigger
  - Accessory (eyeglasses) as a trigger
  - Facial characteristic as trigger: left with arched eyebrows; right with narrowed eyes



#### **Backdoor Attack Surface**

| Attack<br>Surface         | Backdoor Attacks                                                                                                                                                                                                                                                                                   | Access Model<br>Architecture | Access Model<br>Parameters | Access<br>Training Data | Trigger<br>controllability | ASR       | Potential<br>Countermeasure <sup>1</sup>                                                             |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|-------------------------|----------------------------|-----------|------------------------------------------------------------------------------------------------------|
| Code<br>Poisoning         | [51] [52]                                                                                                                                                                                                                                                                                          | Black-Box                    | 0                          | 0                       | Ð                          | High      | Offline Model Inspection<br>Online Model Inspection<br>Online Data Inspection                        |
| Outsourcing               | Image [6], [7], [12], [88], [122] [8];<br>Text [13] [14]-[16];<br>Audio [16], [17];<br>Video [85];<br>Reinforcement Learning [21], [97] [98]<br>(AI GO [22]);<br>Code processing [99], [100];<br>Dynamic trigger [95]<br>Adaptive Attack [102];<br>Deep Generative Model [20];<br>Graph Model [23] | White-Box                    | •                          | •                       | •                          | Very High | Blind Model Removal<br>Offline Model Inspection<br>Online Model Inspection<br>Online Data Inspection |
| Pretrained                | [7], [56]<br>Word Embedding [54];<br>NLP tasks [107];<br>Model-reuse [9];<br>Programmable backdoor [53];<br>Latent Backdoor [57];<br>Model-agnostic via appending [106];<br>Graph Model [101]                                                                                                      | Grey-Box                     | Ð                          | O                       | Ð                          | Medium    | Blind Model Removal<br>Offline Model Inspection<br>Online Model Inspection<br>Online Data Inspection |
| Data<br>Collection        | Clean-Label Attack [62], [63], [110] [114],<br>(video [85], [109]),<br>(malware classification [111]);<br>Targeted Class Data Poisoning [113], [115];<br>Image-Scaling Attack [64], [65];<br>Biometric Template Update [123];<br>Wireless Signal Classification [19]                               | Grey-Box                     | Ð                          | O                       | O                          | Medium    | Offline Data Inspection<br>Online Model Inspection<br>Online Data Inspection                         |
| Collaborative<br>Learning | Federated learning [11], [71], [72],<br>(IoT application [70]);<br>Federated learning with<br>distributed backdoor [119];<br>Federated meta-learning [120];<br>feature-partitioned<br>collaborative learning [124]                                                                                 | White-Box                    | •                          | •                       | •                          | High      | Offline Model Inspection <sup>2</sup>                                                                |
| Post-deployment           | [78] [76], [77]<br>Application Switch [125]                                                                                                                                                                                                                                                        | White-Box                    | •                          | •                       | Ð                          | Medium    | Online Model Inspection<br>Online Data Inspection                                                    |

●: Applicable or Necessary; ●: Inapplicable or Unnecessary; ●: Partially Applicable or Necessary.

## This Lecture

- Poisoning Attacks
- Poisoning Scenarios
  - Centralized
  - Distributed
- Defense for Poisoning Attacks

## Poisoning Scenario: Outsourcing (1)

- Scenario:
  - The user outsources the model training to a third party, commonly known as Machine Learning as a Service (MLaaS)
    - E.g., due to a lack of computational resources or ML expertise
  - A malicious MLaaS provider inserts a backdoor into the ML model during the training process
- The user typically has collected data for their task, and they provide the data to the MLaaS provider
  - The user can set aside a small set of data to validate the provided ML model
  - The user can also suggest the type of model architecture and request a preferred level of performance (accuracy)
- The malicious MLaaS provider can manipulate the data and the model to insert a backdoor

## Poisoning Scenario: Outsourcing (2)

- The common approach for devising the attack is:
  - Stamp a trigger to clean data samples, and change the label for the samples with the trigger to a targeted class (dirty-label attack)
  - The trained model will learn to associate samples stamped with the trigger to the target class, while maintaining the labels for clean samples
- The challenge for the user:
  - The backdoored model will perform satisfactorily on the clean set of samples that were set aside to evaluate the model
    - It is almost impossible to tell that the model has been poisoned
  - The backdoored model will misclassify samples containing the trigger
- Note:
  - This attack is the easiest to perform, since the attacker has:
    - Full access to the training data and the model
    - Control over the training process
    - Control over the selection of the trigger

## Poisoning Scenario: Pre-trained Model (1)

- Scenario
  - The attacker releases a pretrained ML model that is backdoored
  - The victim uses the pretrained model, and re-trains it on their dataset
- Transfer learning is very common for training ML models
  - Users use a public or third-party pretrained model to extract general features
  - Transfer learning increases performance and reduces training time
- Examples:
  - Apply transfer learning with a backdoored ResNet model that is pretrained on ImageNet for image classification
  - Use a poisoned word embedding model for NLP tasks
- How?
  - The attacker can download a popular pretrained ML model, insert a backdoor into the model, and redistribute the backdoored model to the public
  - The attacker can train a backdoored model from scratch and offer it to the public

## Poisoning Scenario: Pre-trained Model (2)

- For computer vision tasks, ML models consist of a feature extractor (e.g., convolutional layers) and a classifier (e.g., fully connected layers)
- The attacker can poison the feature extractor
- The victim reuses the pretrained ML model by freezing or fine-tuning the feature extractor, and replacing the classifier for performing classification on their own data
- Transfer learning in ML entails inherent security risk



## Poisoning Scenario: Data Collection (1)

- Scenario:
  - The victim collects data using public sources, and is unaware that some of the collected data have been poisoned
- Examples:
  - The victim relies on volunteers' contribution for data collection
  - The victim downloads data from the Internet
- The collected poisoned data can be difficult to notice, and can bypass manual and/or visual inspection (depending on the inputs)
- The victim trains a DNN model using the collected data, which becomes poisoned
- Note:
  - Collecting training data from public sources is common
  - The attacker does not have control over the training process
  - This attack often requires some knowledge of the model to determine the poisoned samples (mostly white-box attacks, but black-box attacks were also developed)

## Poisoning Scenario: Data Collection (2)

- Clean-label poisoning attack example (PoisonFrogs)
  - "Frog" images are poisoned by adding a transparent overlay of an "airplane" image
  - The manipulated images look like clean images (Frogs), i.e., they can bypass visual inspection
    - When the transparency of the overlay is high, for over 50% transparency, the overlay is visible
  - The attacker does not need to control the labeling process (clean-label attack)





Candidate target Instance

#### Poisoning Scenario: Data Collection (3)



Attack fish with poison dog: the resulting classifier mistakes the corresponding fish for a dog

$$\mathbf{p} = \underset{\mathbf{x}}{\operatorname{argmin}} \|f(\mathbf{x}) - f(\mathbf{t})\|_{2}^{2} + \beta \|\mathbf{x} - \mathbf{b}\|_{2}^{2}$$

- P is the poison instance (dog with backdoor), x is an input, t is the target instance (fish) in the test set, b is the base instance (dog), f (x) extracts the penultimate layer feature representation
- Poisoned dataset: clean dataset + poison instances

## **Crafting Poison Data: Optimization**

Algorithm 1 Poisoning Example Generation

**Input:** target instance t, base instance b, learning rate  $\lambda$ Initialize x:  $x_0 \leftarrow b$ Define:  $L_p(x) = \|f(\mathbf{x}) - f(\mathbf{t})\|^2$  **for** i = 1 **to** maxIters **do** Forward step:  $\hat{x}_i = x_{i-1} - \lambda \nabla_x L_p(x_{i-1})$ Backward step:  $x_i = (\hat{x}_i + \lambda\beta b)/(1 + \beta\lambda)$ **end for** 

A forward-backward-splitting iterative procedure:

- Forward step: a gradient descent update to minimize the L2 distance to the target instance in feature space
- Backward step: a proximal update that minimizes the Frobenius distance from the base instance in input space

#### Poisoning Scenario: Data Preprocessing

- Image scaling attack
  - Most ML models for vision tasks scale input images to a fixed size using down-sampling (e.g., 224×224×3 size is common)
    - An attacker can embed the image of the 'wolf' into the large resolution image of 'sheep', by abusing the *resize()* function in Python
    - When the tampered 'sheep' image is scaled using the *resize()* function, the model will take as input the 'wolf' image, and will associate it to the 'sheep' label
    - The attack does not require control over the labeling process or the training process



https://arxiv.org/abs/1712.07805

## Poisoning Scenario: Code Poisoning Attack

- Scenario:
  - An attacker publicly posts an ML code that is designed to backdoor trained models
  - The victim downloads the code and applies it to solve a task
- ML users often rely on code posted in public repositories or libraries, which can impose a security risk
- The codes can insert backdoors into ML models during running
- Example
  - An attacker can develop/modify code to perform multitask learning, with a model consisting of two branches of layers
  - One branch can perform the *main task*
  - Another branch can perform the *backdoor task* selected by the attacker
  - A loss function is developed that puts weights on the two tasks, so that the model achieves high accuracy on both the main task and the backdoor task
- Note:
  - The attacker does not have access to the training data, or the trained model

## This Lecture

- Poisoning Attacks
- Poisoning Scenarios
  - Centralized
  - Distributed
- Defense for Poisoning Attacks

## Poisoning Scenario: Federated Learning (1)

- 1. The server sends a joint/initialized model to all clients
- 2. Each client trains this model using local data
- 3. The local updates by the clients are sent to the server
- 4. The server applies an aggregation algorithm (e.g., using averaging) to update the global model



Clients

## Poisoning Scenario: Federated Learning (2)

- Byzantine Attack
  - Byzantine attack can be regarded as the initial version of poisoning attack.
  - A Byzantine fault/ failure is a condition of a computer system, particularly distributed computing systems, where components may fail and there is imperfect information on whether a component has failed.
    - Software bugs;
    - Hardware faults;
    - Hijacked by an adversary;

#### Poisoning Scenario: Federated Learning (3)



**Data Poisoning Attack** 

#### Poisoning Threat Model in Federated Learning (1)

- The attacker has full control over one or several participants, e.g., smartphones whose learning software has been compromised by malware.
- Under controls:
  - The attacker controls the local training data of any compromised participant;
  - It controls the local training procedure and the hyperparameters such as the number of epochs and learning rate;
  - It can modify the weights of the resulting model before submitting it for aggregation;
  - It can adaptively change its local training from round to round.

#### Poisoning Threat Model in Federated Learning (2)

- The attacker has full control over one or several participants, e.g., smartphones whose learning software has been compromised by malware.
- The attacker cannot control:
  - The aggregation algorithm used to combine participants' updates into the joint model,
  - Nor any aspects of the benign participants' training.

We assume that attackers create their local models by correctly applying the training algorithm prescribed by federated learning to their local data.

#### Targeted Model Poisoning for Standard FL (1)

global weight  $\mathbf{w}_G^t$ 

local weight vector  $\mathbf{w}_i^{t+1}$ 

local update  $\boldsymbol{\delta}_{i}^{t+1} = \mathbf{w}_{i}^{t+1} - \mathbf{w}_{G}^{t}$ 

weighted averaging based aggregation

$$\mathbf{w}_G^{t+1} = \mathbf{w}_G^t + \sum_{i \in [k]} \alpha_i \delta_i^{t+1}$$
, where  $\frac{l_i}{l} = \alpha_i$  and  $\sum_i \alpha_i = 1$ 

samples  $\{\mathbf{x}_i\}_{i=1}^r$  with true labels  $\{y_i\}_{i=1}^r$ 

desired target classes  $\{\tau_i\}_{i=1}^r$ 

Adversarial Objective 
$$\rightarrow \mathcal{A}(\mathcal{D}_m \cup \mathcal{D}_{aux}, \mathbf{w}_G^t) = \max_{\mathbf{w}_G^t} \sum_{i=1}^r \mathbb{1}[f(\mathbf{x}_i; \mathbf{w}_G^t) = \tau_i].$$

## Targeted Model Poisoning for Standard FL (2)

The objective function for the adversary to achieve targeted model poisoning: misclassify x into \tau.

$$\begin{array}{ll} \operatorname{argmin} & L(\{\mathbf{x}_i, \boldsymbol{\tau}_i\}_{i=1}^r, \hat{\mathbf{w}}_G^t\}, \\ \hat{\mathbf{w}}_G^t = \mathbf{w}_G^{t-1} + \alpha_m \boldsymbol{\delta}_m^t, \end{array}$$

Malicious client: local training

starting from  $\mathbf{w}_G^{t-1}$  to obtain  $\tilde{\mathbf{w}}_m^t$  which minimizes the loss over  $\{\mathbf{x}_i, \tau_i\}_{i=1}^r$ 

The final weight update sent back to the global server by the malicious agent is then  $\delta_m^t = \lambda \tilde{\delta}_m^t$ ,

The attack can cause the global model to classify the chosen example in the target class

#### A stealthy backdoor attack (1)

- Evade the detection of Byzantine resilient aggregation rule to attack the federated learning systems.
- Control a small number of malicious agents (usually just 1) performing a model poisoning attack.
- The adversary's objective: cause the jointly trained global model to misclassify a set of chosen inputs with high confidence,
  - It seeks to poison the global model in a targeted manner.
  - The adversary also attempts to ensure that the global model converges to a point with good performance on the test or validation data.

## A stealthy backdoor attack (2)

Attacking strategy

- Minimize the distance of malicious model parameter to benign model parameters;
- Maintain accuracy in clean/normal data;
- Achieve backdoor accuracy on targeted data;

The malicious model is calculated by: loss on clean data

$$\arg \min_{\delta_{mal}} L(\mathcal{D}_{mal}) + \lambda L(\mathcal{D}_{train}) + \rho \|\delta_{mal} - \bar{\delta}_{ben}\|,$$
Poisoning goal: Distance from clean weights backdoor accuracy to malicious weights

## Poisoning Scenario: Post-Deployment Attack

- Scenario:
  - The attacker gets access to the model after it has been deployed
  - The attacker changes the model to insert a backdoor
- Examples
  - The attacker can attack a cloud server or the physical machine where the model is located
- This attack does not rely on data poisoning to insert backdoors
- Weight tamper attack the attacker changes the model weights to create a backdoor
- Bit flip attack the attacker flips bits in the memory of the machine where the DNN is located (as a type of fault injection) during runtime
- Note:
  - This attack is challenging to perform because it requires that the attacker gets access to the model by intruding into the system where the model is located
  - The advantage is that it can bypass most defense

## This Lecture

- Poisoning Attacks
- Poisoning Scenarios
- Defense for Poisoning Attacks
  - Blind backdoor removal
  - Offline inspection
  - Online inspection
  - Post backdoor removal

#### Blind Backdoor Removal

- The goal is to remove or suppress the backdoor effect while achieving high accuracy on clean inputs
- Example: Fine-pruning defense
  - Remove potential backdoor by pruning the neurons in DNN with the smallest contribution
    - First, sort the neurons based on the activation values on clean inputs and remove those with the smallest activation values
    - Second, fine-tune the modified model
  - Limitation: reduced accuracy on clean inputs

## **Offline Inspection**

- Assumption
  - The poisoned data is available to the defenders
- Example: Spectral signature defense
  - First, a DNN model is trained on collected data that contains poisoned samples
  - Second, for each class, calculate SVD on the logit values, and remove all input samples that are outliers (i.e., have singular values outside of a range of values)
  - Third, retrain the model with the remaining samples
- Example: Gradient clustering & activation clustering defenses
  - Assumption: trigger inputs will produce large gradients at the trigger position or large logit values, respectively.
  - First, a clustering algorithm (e.g., *k*-mean clustering) is applied to separate clean inputs from trigger inputs.
  - Second, the trigger inputs are removed or relabeled, and the model is retrained.

#### **Online Inspection**

#### Apply anomaly detection to check if the inputs contain a trigger

- Example: SentiNet [1]
  - First, applies explainability approaches to discover regions in input images that may contain a trigger
  - Second, these regions are extracted and patched on clean images with correct ground-truth labels
    - If the patched images are misclassified, the extracted patch contains a backdoor trigger
- Example: STRIP defense [2]
  - First, apply random noise to create replicas of input images
  - Second, use the entropy of the replicas for anomaly detection
    - Replicas of trigger images have low entropy (the predicted class is more uniform), whereas clean images have high entropy (the predicted class is more random)

[1] https://arxiv.org/abs/1812.00292[2] https://arxiv.org/pdf/1902.06531

#### Post Backdoor Removal

- Includes techniques to remove the backdoor, after it is identified by the previous defense approach
  - If the defender has access to poisoned data, they can remove trigger inputs, and retrain the model using only clean inputs
  - Another approach is to change the labels of the poisoned inputs with triggers to the correct labels, and then retrain the model
    - For this defense, it is required to reverse-engineer the trigger

Note: The introduced attack and defense methods are not exhaustive; Read more related work and you can design your own!

#### References

- Neural Cleanse: Identifying and Mitigating Backdoor Attacks in Neural Networks (<u>https://ieeexplore.ieee.org/document/8835365</u>)
- Beyond Boundaries: A Comprehensive Survey of Transferable Attacks on Al Systems (<u>https://arxiv.org/abs/2311.11796</u>)
- A Comprehensive Survey on Poisoning Attacks and Countermeasures in Machine Learning (<u>https://dl.acm.org/doi/full/10.1145/3551636</u>)